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THE CONSISTENCY OF Ext(G, Z) = Q 

BY 

SAHARON SHELAH* 

ABSTRACT 

For abelian groups, if V ~- L, Ext(G, Z) cannot  have cardinality No. We show 
that G.C.H. does not imply this. See Hiller and Shelah [2], Hiller, Huber  and 
Shelah [3], Nunke [5] and Shelah [6, 7, 8] for related results. We use the method 
of [71. 

THEOREM 1. Suppose the universe V satisfies G.C.H., and K is a divisible 

countable (abelian ) group (i.e. I KI  <-_ No). Then for some forcing notion I ~, in V P 

for some abelian group G, Ext(G, Z ) =  K. 

COROLLARY 2. It is consistent that for some group G, Ext(G, Z) = Q (Q - -  the 

rationals as an additive group, Z - -  the integers as an additive group). 

REMARK. (1) This answers questions from Hiller and Shelah [2], Huber,  Hiller 
and Shelah [3] and Nunke [5]; remember that if V = L ,  Ext (G,Z)~No.  The 

result was announced in [9]. 
(2) The group we get is Nl-free and of power Nt. 

(3) Instead of " K  countable", we can demand '1 K] =< N2"; the proof will not 

change significantly. We can change I GI and [KI, but we have not checked 

carefully. 
(4) It is well known that Ext(G, Z) is divisible. 

PROOF. Let K be the direct sum of Kp (p a prime natural number or zero), 

where Ko is torsion free and for p ~ 0 (Vx E Kp) (3n)  p"x = 0. This is possible as 

K p -  K is divisible, and each Kp is divisible. Let ~ - { x  E Kp:px = 0}, so K~ is a 
vector space over Z/pZ. So let B~ C_ Kp be a basis of K~ (as a vector space over 

the rationals for p = 0, and over Z/pZ otherwise). Let B = I,.J~ Bp, so as K is 

countable, I B I =< No. Let K~ C_ Kp [K ~ C_ K] be the subgroup generated by Bp[B] 

(for p > 0 this is not new). 
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Choose S to be a stationary costationary set of limit ordinals < tot. We shall 

define a group G of the following form: G is freely generated by x~ (i < to~) and 

z,., (8 ~ S, n < to), with the only identities 

p(&n)z~., = x ~ - r ~  where ~'~= ~ x~ 
~Ea(/5,n) 

where p(& n) is a strictly increasing function of n (for each 8 separable); for 

8 ~ S, r/, is an increasing to-sequence of successor ordinals converging to 8, 

a(& n ) = { n , ( l ) :  l <-_ k , (n) ,  l >  k s (m)  for every m < n}. 

NOTATION. If h is a function from tot to Z, ~'=XT=0c~x,o (c, E Z )  then 

h( z )  = Xc, h(l( i)) .  We let p be a prime number. 

FACT A. Ext(G, Z) is isomorphic to Eo/E,, where E0 is the set of functions 

from S x to into Z, addition is defined coordinatewise; Et is the subgroup of 

f ~ Eo such that for some h : tot ~ Z, f ~/~, i.e., f(& n) =/~(8, n) mod p(& n) (for 
every (8, n) E S x to), where /~ is defined by /~(& n) = h ( 8 ) -  h(~-~). 

PROOF OF FACT A. Like that of [10] 3.3. 

Now we shall define the group G by defining the a(& n) and an embedding of 

B into Eo/E1; we do it by forcing, to simplify the proof. 

An element q of P, = Q0 is a triple: 

a ( 8 ) q = ( ( a ( & n ) q , p ( & n ) q ) : n < t o )  for 8 E S ,  8 < 8 o ,  

f~ ( s E B ) ,  h~ ( s E B - B o ) ,  

such that the (a(& n): n < to) are as mentioned above: a(8, n) is a non-empty 

finite subset of 8, max a (8, n) < min a (8, n + 1), 8 = sup {min a (8, n):  n < to }, [~ 

is a function from (S n 80) x to into Z, and for s E Bp, p # 0, p[, =/~, (where 

(pf,)(i) = p(fs(i))) and h, : 8o---~ Z. 

Also p(& n) is a prime natural number, p ( & n ) < p ( & n  +1). The order is 
natural. 

Clearly there is a P0-name Q defined by a(& n), p(& n) and L (s E B), and 

let f, = E f~, where t = E s~, s~ E B (i.e. t E K1). Clearly f, ~ E0. 

Clearly in V °,', Ext(G, Z) is too big. So we define an iterated forcing P~ 

(i =< to2), with countable support, P~+~ = P~ * Q~ such that for each i > 0 ,  Q~ 

"kills" an undesirable member of Ext(G, Z). More elaborately, for each i, f~ is a 

P,-name of a member of E0, such that for some p(i) either p ( i ) = 0 ,  and 

4~ IF e' "(Vn > O) (Vt E K ' )  (nf, - f, ~ El ) " ,  o r  p = p( i )  is prime > 0 and 
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~b IF e' "p~ E Eo A (Vn)(Vt E K~)(0 < n < p)----~ [nf, - f, ~ Eo]" 

Now in V ~,, Q, ={h : for some ~, h : c ~ Z ,  and for every ~ =< c~, fi E S, 

f~ (,~, n) = h ( / ; ) -  h(r~) mod p(& n) (if ~ = a this means there is such h (iS))}. The 

order: inclusion. 

FACT B. (1) (in V p,) If h E Q , ,  D o m h = ~ ,  a_-</3, then there is h*, 

h _-< h * E Q,  Dom h * =/3. Moreover if h '  is a finite function from [a,/3) to Z we 

can demand h'  C_ h *, except when tz ~ S f'l Dora h'. 

(2) (in V e, ) ~b II -°, "f,  E E~". 
w -  

PROOF. (1) By induction on /3. For /3 ~ S, totally trivial; for /3 E S, we first 

define h * [ {*b (n):  n < to, a _-< r/~ (n)} appropriately, and then define h * r 7b (n) 

by induction on n. 
(2) Follows from (1). 
So P~ = {p : D o m p  is a countable subset of i, p( j )  a Pj-name of a member of Qj 

for ] ~ D o m p ,  i.e., ~b lkS"p( j )EQj"} .  (We shall write p( i ) (~)=c  for 

p [ i l F  e , ' ' p ( i ) ( ~ ) = c ' ' . )  The order is p~ <p2  if i E D o m p t  implies 
p2 r i II -e' "pl(i)  _-< p2(i)". As in [7]: 

FACt C. (1) For every p E Pi there is p ' E  P,, p =< p', and for some & 

Va E Domp,  Domp '~ (a )=  8 and p ' (a )E  V. Such p' is called of height & 
(2) If p. has height a., p.~_p.+~, o~,t<ot,t+l, Un<o,o~n=~S then 

O.<~p. ~ P .  

(3) P~ satisfies the N2-c.c. and does not add new to-sequences. By suitable 

bookkeeping we can assume every P~-name f of a function as above is f for 

some i. 
(4) If in the forcing by P~,  it is forced that, for every t and p, "t  E K'p 

f, ~ E~" then E x t ( G , Z ) =  K (note that E~ depends on the universe we are 

dealing with). 

PROOF. As in [7], (1), (2), (3) hold. Let us prove (4). Remember  that by Fact 
A, Ext(G, Z ) =  EdE1. As, e.g., by Fuchs [1], Eo/EI is a divisible group; it is 

enough to check that: 

(a) t E K  ~, t#O imp l i e s / ,~  E~, 

(b) for f E E0 - E,, for some n > 0, and t E K ~, n f~  El, and nf - f, E El. 
Now (a) follows immediately by the hypothesis whereas (b) follows by Fact C3 

(and the definition of Q,). 
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So the rest of the proof  is dedica ted  to the proof  that  the hypothesis  of Fact  

C4 holds. So suppose t .  E K~., t .  ~ 0, h a P~-name,  q .  E P~ ,  

( , )  q ,  IF~ "f , .  = ~ " .  

As P.,  satisfies the N2-chain condit ion,  we can replace  P,~ by P~, (i < w_~) and 

choose a minimal such i (i.e., i minimal such that  there  are a P~-name h and 

q ,  E P,, so that  q , IF  P, "f, .~ I~"). Those  i, t , ,  p , ,  q , ,  h are fixed for the rest of 

the proof.  

Before  we prove  we no te  some easy facts on the forcings. 

FACT D. (1) If a </3,  p E P,,  q E Pm (q I a )  ~ p, then r = p v q is their  least 

upper  bound  (where D o m  r = D o m  p U D o m  q, r ( j )  is p ( j )  for  j E D o m p  and 

q( j )  for  j E D o m  q - D o m  p).  

(2) If p E P~, ao < • • • < a.-~ < a, ht a finite funct ion f rom to1 to Z for l < n 

such that p [ at IF e-, " D o m ( p  (ott))< min D o m  hi"  then there  is q, p =< q E P~, such 

that for  ! < n, q I at IF e",''ht C q(at)". 

PROOF. (1) See [7]; easy to check.  

(2) Prove  by induction on a ,  1, using Fact  B1. 

FACT E. I fqEP. ,  a o <  " ' "  < a , - ~ < i ,  &=(ao,. . . ,a,_l) then for some q', 
q <=q' E P~, q' has height and for every  q", q' <-q" E P~, Pos~(q')= Pos~(q") 
where  Pos~(q °) = {(cO, . .  -, c2"-~): for  every  ~o < to1 for some successor ~, ~'o < 

~ '< to l  and ro,...,r,,_~EPi, q°<=ro,...,q°<=r,~_l, ro[ct.-l=r~[ct._l . . . . .  

rm-1 r a.-~, and r t (a ._~)(~)= c 2~ (for l < m)  and rt IF e' "h(~')  = c 2t+1'' for  l < m}. 

No te  that  a o , - . . ,  a ,  2 were  not  used, so Pos~(q °) depend  only on q, a,_l ,  and 

Pos~(q °) decrease  when a._l ,  qO increase. 

PROOF. Easy by Fact C2. 

So w.l.o.g. 

ASSUMPTIOn E l .  (1) Ei ther  ( a )  or (/3) where  

( a )  i is a successor (ordinal) or of cofinality N0, and for  arbitrari ly large a < i, 

P o s ~ ( q , )  = Pos<~>(q') for  q ' E  Pi, q'--> q , ;  

(/3) i has cofinality N1, and there  is a ,  < i  such that Pos~.>(q , )=  Pos~>(q') 

whenever  a ,  ~ a < i, q ,  - q '  E q , .  

(2) Also q ,  has height y*.  
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NOTATION. An & whose last e lement  is among the a ' s  in ( a )  if ( a )  holds and 

is > a .  if (/3) holds, is called good. 

DEFINITION F. We call a candidate a sequence ti = ((a., p . ) :  n < n , )  such 

that  a .  is a finite non-empty  subset of successor ordinals < to,, max a,. < 

minam+l for m < n , ,  p,. prime (so ti' = ( ( a '  ' • . , p . ) .  n < n , )  etc.). 

For  a good ( / =  (ao," • ", a, .-l) ,  0 =< ao < " '"  < a,.-~ < i, ao = 0 ~ p .  ~ 0, and 
g, g : Range  c/--) to let 

T(g, &, ~) = { t : t a function from {(at, k ) :  l < m, g (at) =< k < n ,  }, 

t(at, k ) e { c  ~Z:0_-< c < pk }}. 

We call ~ = {q, : t ~ T} an (g, &, a)-tree,  if T = T(g,  &, f~ ), q .  <= q, (n . - -  f rom 

t~) and if t E T ,  1 < l(&), g ( a l ) < = k < n ,  then 

(a) t(at, k )  = q,(at)(Zk) mod pk where rk = E~ , ,x~  and at > 0 ,  

(b) if tl [ (at x to) = t2 t (at x to) then q,, [ a~ = q,~ [ a .  

(c) if ao = O, then 

t(ao, k )  = ~_~ n.h~' (Tk)modp~ w h e r e t . =  ~ n.t. (t. i s fromBw. ). 
s E S  s E S  

FAC"r G. Suppose g, a, u, q are as in Definition F. Then we can find a.., p.., 

c , ,  ~i such that (it seems c ,  = 0 always) 
(a) t71 is a (g, &, t~ 1)-tree, 

(b) ti ~= a^(a. . ,p . . ) ,  
(c) if tl ~ T(g, &, al),  t E T(g,  &, f~) and t C tl then q, <= q~,, 

(d) for every t~E T(g,&,6~) ,  q , , IF"h0" . . )~  c ,  mod p. .".  

We delay the proof of Fact G, but first we prove from it the desired 

contradiction. 
Let h, q .  E N < (H(I~2), E ,  P, IF), N countable,  8 * = N n to, E S. We define 

by induction on n, g", t i ' ,  t~", t~" such that 

(a) ~" is a (g", &", t~ ")-tree, 

(b) g", &", a"  ~ N, &" good, 

(c) q ,  =< qO for every t E T(~ °, ti °, ti°), 

(d) g" C g.+l,  Range c/" C Range (/"+1, t~"+l [ n = t~", ~" has length n, 

-"  a , u  ), t C t * t h e n  " .+1 (e) if t E T ( g " , a  , t~"), t * E ( g  "+', - - n + l  - - . + 1  q, C_q,, , 

(f) 8 " =  U . < . 8 . ,  8. < 8 . + 1 < 8 "  and t E T(g"+l,&"+~,a "+1) implies q~,+l is 

bigger than some condit ion of height /3 , ,  8. _-</3 7 and every ~ E N O i belongs to 

U . < , . R a n g e 6 "  except 0 when p ,  = 0, 
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(g) for every n < w  for some c , ,  c , E Z ,  O = c , < p 2 + ~ ,  and for every 
t E T(g"+', &"+', fi .+1), q 7+~ iF.e, "h (~-.) # c ,  mod p2+~". 

The definition is possible by Fact G (plus a trivial work). We concentrate on 

the case p,  = 0. 

Clearly there are q " E  Oo such that for every t E T(g", t~", ti"), qT(0)= q". 

Now clearly q~ = U q" E Oo; and as in [7] 1.7, 1.8, for every q', q'~ < q' E Po, if 

q'lF"a(6*, n) = a2 +', p(6*, n) = p~+' for n < to" there is r, q ' <  r ~ P, q ,  < r, 

and for every n for some t ~ T(~",ti",  fi"), qT<=r. 
So r forces that 

(i) for every n, h ( ~ - , ) # c ,  rood pT, +', 

(ii) suppose t ,=X,n, t ,  (t, EBp.) then as q , I F " / , ~ h " ,  q , - r ,  clearly 

X,r,f,, (6% n) = h(6*) - h ( r , )  mod p:+'. 

Notice that when choosing q' we have total freedom to choose the f,, (6", n) E 

Z. So for each c @ Z, for some n we can contradict the possibility h(8*) = c. 

There is no problem to complete the definition of f,(6*, n) (t E B), h,(& n) 
(t E Up,,0Bp) to get q'. 

For p . # 0 ,  the problem is that h,[Ut<o,a(6*,l)=h,[Range(s,.)  in 

fact determine [, [{(8", n) :  n < to}, for t U Bp.; however, the definition of the 

tree provides us with enough freedom for the choice of h,.(8, (I)), i.e., we choose 

h,(6). Let us enumerate Z : Z =  {d, :n  < to} and choose h, (~',) (s ~ S) (where 

t ,  = X,~sn, t) such that ~,,~s n,h,(6)- d. -X,~sn,h,(z,) = c* mod p(& n). 
So we are left with: 

PROOF OF FACt G. Let T = T(g, &, t]). It is easy to see that 

FACT H. If 4 0= (q°,:t E T) is a (g,&, fi)-tree, tog T, q,°<=q;oEPi, then we 

can find q; (t ~ T-{to}) such that q, <=q; and (q;:t ~ T) is a (g,& t~)-tree. 

Now the following fact is crucial. 

FACT I. One of the following cases holds: 

(a) there are c(i) ( / = 0 , 1 , 2 )  in Z such that c (1 )#c (2 )  and 

(c(0), c(1), c(0), c(2))e eos  (q,), 
(b) there are c (1) (! = 0, 1, 2, 3, 4, 5) such that (c (1): 1 < 6) E Pos~ (q.) ,  but 

c(2/) ~ c(21 + 1) is not a linear function, i.e., there are no rational numbers d~, d2 
such that c(21 + 1) = d~c(21)+ d2, 

(c) there are c (1) (l < 8) such that (c (l): l < 4) E Posa (q , ) (c  (I): 4 =< ! < 8) 
E Pos~ (q ,) but (c(3) - c(1))/(c(2) - c(0)) # (c(7) - c(5))/(c(6) - c(4)) (both well 

defined). 
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PROOFOF FACt I. Let  3, = a.._, and h,  be the P~-name of U { q ( y ) : q  i s in  the 

generic  set}. So if (a) fails, then for some P , - n a m e  F 

" - h ~7 " --- q .  IF e, h ( ~ ' ) - F ( ~ ' ,  ~ ( ) )  f o r e v e r y s u c c e s s o r ~ ' > y  *, ~'<to~ 

(so F is a funct ion f rom to, × Z to  Z). If also (b) fails then  there  are P~-names d,, 

d2 (of functions f rom to, to Z) such that 

" F  c - ( q ,  r 3')I I-e' _ ( ~ ' , )  - d,(~')c + d2(~') for  every  successor ~ < to,, ~" _-> y *". 

If also (c) fails then d,(~') = d, E Z for some d,. 
So suppose (a), (b) and (c) fail, and let G~ C P~ be generic,  q .  E G,. Then  in 

V[O, l ,  fv =/~v, ], ~/~. Let  h * = h - d,h,,  then ]` - d,fv -~ fz *. Now ],, [~ ~ V[G~] 

(where G~ = G~ tq P~) so if we prove  h * E V[G~] we shall get a contradict ion (to 

the requ i rement  on [~ in the definit ion of our  i terated forcing). Now for ~" => 3'* 

successor,  h * (~ )=  d2(~7), and the  funct ion d2 belongs to V[Gd. So h* t{~ + 

1:~'_-__ 3 '*}~ V[Gv]. Also all our  forcings do not  add reals, hence  h*  I 3 ' * E  

V[G~]. So h*  I{~ < to~ :~ non  limit} E V I G i l ,  but  we can construct  h* I{8 < 

tot : 8 limit} f rom ]`, [ ,  h * t {~" < to, : ~" non limit}, by the equat ions  

],(8, n ) -  dtf~(8, n)  = h * ( 8 ) -  ~ h*(~') mod p(8, n)  

as all e lements  of a (8, n)  are successor ordinals. So we finish the proof  of Fact  I. 

CONTINUATION OF THE PROOF OF FACT G. Now we choose a pr ime natural  

number  p . . > p . . - t  such that  c ( 2 ) - c ( 1 ) # 0  mod  p.. if (a) holds and 

(c (3) - c (1))/(c (2) - c (0)) # (c (5) - c (1))/(c (4) - c (0)) mod p.. (so c (2) - c (0) # 0 

mod  p..) if (b) holds, and (c (3) - c (1))/(c (2) - c (0)) # (c (7) - c (5))/(c (6) - c (4)) 

mod p.. if (c) holds (and so that divisions are not  by zero).  
So now T ~ = T(g,  &, a^((a.., p..))) is defined, though a.. is still not defined. Let  

for  a finite set a of successor ordinals < tot but  > Max a. ._l  (a will be  an initial 

segment  of the a.. we shall construct)  

R ,  = {F : F = (r, : t E T 1) a (~, &, a ^((a, p..)))-tree 

and to E T, t E T ' ,  to C t implies q~ C r, and r, de te rmine  h(~)  for  each ~ E a}. 

It is easy to check that  Ra ~ 0 ,  and that  as T '  is finite it suffices to p rove  (for 

proving Fact  G,  thus finishing the poof)  

FACT J. If ?°ERa,  b E T  t, then we can find a,, a C a , ,  M a x a <  

Min(a,  - a) ,  or  a,  - a = O and F' E R., such that: 

(1) for  every  t E T t, r ° = rl,  
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(2) r;, IF e' " E ~ , ,  h (~)  ~ 0 mod p, ." ,  

(3) for  t E T 1, t ~  tl rl IF"E~ , ,_ ,  h(~') = 0 mod  p, ." .  

PaOOF OF FACt J. If r~], IF "Echo h (~) ~ 0 mod  p , ."  we can let a~ = a. So assume 

this fails. 

On R~ there  is a natural  o rder  ~2 =< f3 iff r, 2 =< r 3 for  every  t E T L. As in Fact  C 

it is easy to show that above  every  ~ E R,  there  is some ?" of height a for  some a 

(i.e., each r; (t E T 1) has height a ) .  Now we can define 

Pos" (?-)= {(c ~: t E T ' ,  l = l(&)):  for  every  ~'o < ~os for  some successor ~, 

~ '0<~ '<  ~o, there  is ~ R , ,  ~=<r '  and r~(ot~)(~)=c~ 
for  l < l ( f i )  and r~ IF "h(~')  = c[~)"}. 

As in the proof  of Fact  E,  w.l.o.g, our  go is such that  Pos" (?-o) = Pos . (?-) for  any 

~, ~o =< ?- E R,.  Now we should consult  Fact  I, i.e., which of the three  possibilities 

there  holds. No te  that  we shall add many times (p.. - 1) instead of subtracting.  

First assume that  (a) holds and c(l) (l < 3) exemplifies it. By Fact  H,  there  are 

(C~: t E T l, l =< l(&)), (d~: t ~ T ~, l = l(&)) in Pos" ( f )  such that c~--- d'~ except  for  

t = t,, ! = l ( f ) ,  and c',i~ = c(1), d'~}~)= c(2); r e m e m b e r  that  in construct ing a 

t ree  the interact ions are only up to a, .  - 1. So we can find r "  < o~L, ?"  E R a  by 

induction on m =< p,. such that:  

(i) f "  -<_~" =<r ~, m a x ( a ) <  ~"  < ~"+*, ~" a successor,  

(ii) for  every  t ~ T  ~, and l < l ( & )  and m > 0 ,  

r?+'(~,)(~" ) = c;, r : ( a s ) ( ~  °) = a;,  

(iii) for  every  t ~ T s 

r7 +' IF " h  ( ~ " )  = c~>", r~ IF " h ( ~  s) = d',~)". 

So e p, {~ : ! < p} U a (where p = p . . )  are as required.  
So we turn to case (b) and let c(l) (! = 0, 1 , 2 , 3 , 4 , 5 )  exemplify this. We  can 

find k~ ( 1 < 3 )  such that  E ,<3k~c(2 l )=0  mod  p..; Z~<3k, = 0  mod p,. but  

E,<3 k~c(21 + 1 ) ~  0 rood p.. w.l.o.g, k~ > 0, let k = Et<3 k,. 

It is easy to see that  we can find ( c ~ " : t ~ T  s, l<=l(~))~R, ,  for  

= '""  = c (2m) ,  m = 0 , 1 , 2 ,  such that c'; '=c~ ° for  t~t~ or  l < / 0 i ) - 2 ,  and c,.)-s 
~l.rrt 

ct<~) = c(2m + 1). 

Now we can define ~, ~', re(l) (1 =< l =< k)  by induct ion on l such that  (~o is 

given) ~' =<~,+s, Max a <~.s, ~s <~,+~, r e ( l )  . . . . .  r e ( k 0 ) = 0 ,  m ( k o + l )  = 

. . . .  m (k0 + kl) = 1, m (k0 + ks + 1) . . . . .  m (ko + ks + k~) = 2 , . . . ,  r~,(a, )(~ '  ) 

= c~ '"(°, r~lF "h(~  "~) --- c~ '"(~)''. 

Clearly the last ~', ~ is the ~-' required  in the Fact. 
For  the case (c) holds, the proof  is similar. 
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